THE TURBULENT BOUNDARY LAYER STRUCTURE OVER DIATOMACEOUS SLIME FOULING

Elizabeth A. K. Murphy
Department of Environmental Sciences
University of Virginia
Charlottesville, Virginia, 22903, USA
eam6vf@virginia.edu

Michael P. Schultz
Department of Naval Architecture and Ocean Engineering
United States Naval Academy
Annapolis, Maryland, 21402, USA
mschultz@usna.edu

Cecily N. Steppe
Department of Oceanography
United States Naval Academy
Annapolis, Maryland, 21402, USA
natunewi@usna.edu

Julio M. Barros
Department of Mechanical Engineering
United States Naval Academy
Annapolis, Maryland, 21402, USA
barros@usna.edu

Karen A. Flack
Department of Mechanical Engineering
United States Naval Academy
Annapolis, Maryland, 21402, USA
flack@usna.edu

Matthew A. Reidenbach
Department of Environmental Sciences
University of Virginia
Charlottesville, Virginia, 22903 USA
reidenbach@virginia.edu

ABSTRACT
Biofilm fouling has a significant effect on ship performance. Here, the impact of biofilm fouling on boundary layer structure is investigated. Turbulent boundary layer measurements were performed over diatomaceous slime-fouled plates using high resolution PIV. The mean velocity profile over biofilm shows the expected downward shift (ΔU'), producing higher drag, and hence higher friction velocity. This increase in drag is seen in enhanced turbulent kinetic energy and Reynolds shear stress. Due to the complex nature of the biofilm’s topography, the flow is heterogeneous in the streamwise direction when compared with smooth-wall flows.

INTRODUCTION
Many biological surfaces are rough, and man-made surfaces, such as ship hulls, tidal turbine blades, and canals often become rough due to biological activity, such as the attachment and growth of organisms, also known as biofouling. This roughness impacts the performance of these engineered systems (Townsin 2003; Walker et al. 2013a; Walker et al. 2013b). Surface roughness due to biofouling on ship hulls has major economic consequences for shipping and Naval activities. For example, for mid-sized vessels alone, biofouling costs the U.S. Navy an estimated $56 million per year due to increased fuel consumption and the costs of cleaning and painting the hull (Schultz et al. 2011). The primary biofouling community seen on Navy vessels is a biofilm, which is composed of bacterial or algal cells embedded in a viscoelastic extracellular polymeric substance (EPS) (Stoodley et al. 1999). The hydrodynamic regime a biofilm grows in, as well as the organismal makeup of a biofilm determines its physical structure. Different species have different cell surface properties (i.e. hydrophobicity or hydrophilicity), that may influence how the structures interact with the flow within the viscous and turbulent boundary layer above the film (de Beer and Küh 2001). Biofilm thicknesses range from micrometers to centimeters, and the structure of biofilms is highly heterogeneous, often composed of bulbous cell clusters between which are voids that permit fluid flow (de Beer at al. 1996). When grown under shear, biofilms form thin, flexible streamers that protrude from the surface (Taherzadeh et al. 2009). Eddies are shed off of the cell clusters, causing three-dimensional flapping of the streamers (Stoodley et al. 1998). Biofilms found on ship hulls are often primarily composed of diatoms, and are referred to as diatomaceous slimes (Schultz et al. 2015). Fouling-release and antifouling hull coatings can be ineffective at preventing diatomaceous slime fouling (Molino and Wetherbee 2008). These slimes are also common on marine sediments, where they stabilize the sediment and may alter transport between porewater and the water column (Tolhurst et al. 2008). Though biofilms typically have low vertical relief and the roughness elements are compliant, biofilm fouling induces a steep drag penalty on fouled surfaces, increasing the skin friction on a plate by up to 70% of that of a smooth surface (Schultz et al. 2015). Field and laboratory trials indicate that slime on ship hulls significantly increases the resistance and power requirements of the vessel (Schultz 2007; Haslbeck and Bohlander 1992).

In most cases, studies of the effects of roughness on the turbulent boundary layer focus on rigid roughness elements, often with regular spacing (Krogstad and Antonia 1999; Flack et al. 2005; Flack and Schultz 2010). However, in biological systems, compliance and irregularity are the norm. Direct measurements show that biofilms increase skin friction on fouled surfaces, and analysis of the mean velocity profile shows that the effective roughness (k_e) of a biofilm is greater than the physical height of
within the turbulent boundary layer momentum transport, rotational motion, and coherent structures increase in skin friction boundary layer flow. Given that biofilms provide insights into the mechanisms of the effects of biofilm on the velocity field throughout the boundary layer flow over a biofilm as well as the heterogeneous nature of biofilm that are commonly found on ships, and are also found on antifouling and fouling-release coatings that have been exposed to the marine environment under dynamic conditions (Schultz et al. 2015). The fouled plate tested was exposed in the dynamic slime facility for 10 weeks and had a uniform layer of biofilm that averaged 1.7 ±0.5 mm thick with a mean peak-to-trough distance of 0.5 mm. Testing was performed in a recirculating tunnel facility in the United States Naval Academy Hydromechanics Laboratory. The flow enters the test section through several flow-conditioning devices: a contraction, mesh screens and a honeycomb flow straightener. The freestream turbulence in this facility is less than 0.5% (Volino et al. 2007). The test section of the tunnel is 0.2 m x 0.1 m, with a length of 2 m. The adjustable top wall of the tunnel was set to provide a zero-pressure gradient flow during testing. The free stream velocity was 1.1 m/s.

Particle image velocimetry (PIV) was used to capture the flow field in the streamwise - wall-normal (x – y) plane. The system consisted of one 6.6k×4.4k pixels 12 bit frame straddle CCD camera (TSI 29MP) coupled with a 190 mJ per pulse, dual-cavity pulsed Nd:YAG laser (Quantel). A 0.3 mm thick laser lightsheet was formed by a spherical-cylindrical lens configuration. The flow was seeded with 2 μm silver coated glass-sphere particles, and all measurements were performed ~1.22 m downstream of the boundary layer trip, and ~0.42 m downstream of the leading edge of the fouled plate.

Image pairs were processed using a recursive Nyquist grid with 50% overlap ending in a 32² pixel window, resulting in a velocity resolution of 176μm and a field of view of 72 x 42 mm (2.4Δx×1.4Δy). Vectors statistically very different from their neighbours were removed and replaced with interpolated vectors. More details of PIV processing are given in Barros et al., 2016.

Smooth wall boundary layer data is used for comparison in this study. Data were taken in the same facilities as the biofilm data over a smooth acrylic plate. Spatially explicit data are from the PIV analysis as described above, with a 157.27 x 51.47 mm window. The spatial resolution of the smooth wall PIV vector data is 144 μm². Additionally, a smooth wall mean velocity profile was taken using Laser Doppler Velocimetry (LDV) at the same PIV measurement location for comparison purpose. The LDV setup was similar to that described in Schultz and Flack 2007.

Table 1. Roughness parameters of the biofilm-fouled plate and the smooth plate. δ^+ is the friction Reynolds number.

<table>
<thead>
<tr>
<th></th>
<th>U_e (m/s)</th>
<th>δ (mm)</th>
<th>$Re_e = \delta^+ U_e/\nu$</th>
<th>U_e (m/s)</th>
<th>ΔU^+</th>
<th>k_s (mm)</th>
<th>k_s (mm)</th>
<th>C_f</th>
<th>ℓ_f (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>1.2</td>
<td>33.5</td>
<td>1.6×10³</td>
<td>0.046</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.8×10⁻³</td>
<td>2.1×10⁻⁵</td>
</tr>
<tr>
<td>Biofilm</td>
<td>1.1</td>
<td>30.0</td>
<td>2.5×10³</td>
<td>0.076</td>
<td>12.8</td>
<td>735.8</td>
<td>8.8</td>
<td>9.0×10⁻³</td>
<td>1.2×10⁻⁵</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

Biofilm and Facilities

A dynamic slime exposure facility, described in Schultz et al. 2015, was used to grow biofilm on large (200 mm x 1.52 m) acrylic plates affixed to the outside of a rotating drum submerged in brackish water with a salinity of 18 ppt. The drum rotates at 60 rpm, creating a peripheral velocity of 1.9 ms⁻¹, so that biofilm growth occurred under shear. The biofilm consisted of four genera of diatoms (*Amphora*, *Achnanthes*, *Entomoneis* and *Navicula*) that are commonly found on ships, and are also found on antifouling and fouling-release coatings that have been exposed to the marine environment under dynamic conditions (Schultz et al. 2015). The fouled plate tested was exposed in the dynamic slime facility for 10 weeks and had a uniform layer of biofilm that averaged 1.7 ±0.5 mm thick with a mean peak-to-trough distance of 0.5 mm.
Flow parameters for the smooth wall and slime-fouled wall are given in Table 1. The boundary layer thickness, δ, was measured from 0.5 mm below the height of the tallest point of the biofilm.

Mean Velocity Profile Analysis

The log-law equation for flow over a smooth wall,

$$U^+ = \frac{1}{\kappa} \ln(y^+) + C$$

(1)

describes the mean boundary layer velocity profile in the log region above the bed. Here, the $+$ superscript indicates that the term is normalized by inner units (U_τ and $\frac{y}{\delta}$). Both C and κ are empirically derived universal constants. C is the log-law intercept for the smooth wall, here set to 5.2, and κ is the von Kármán constant, 0.41 (Flack et al. 2005). The structure of flow over a rough wall is altered, with the addition of a wall datum offset (ε) and the roughness function (ΔU^+), so that the flow in the log-region of a rough wall boundary layer is described by

$$U^+ = \frac{1}{\kappa} \ln(y + \varepsilon)^+ + C - \Delta U^+$$

(2)

where ΔU^+ results in a downward shift of the velocity profile, and ε is the vertical displacement of the virtual origin. The addition of these two variables complicates finding the shear velocity, U_τ. Typically, an iterative procedure is used to adjust the values of U_τ and ε until the slope matches that of the smooth wall (Perry and Li 1990). However, for our biofilm flows the log-layer appears to be too thin for this method to be effective. This may be due to interference of flow visualization very close to the wall by the biofilm or by the relatively modest Reynolds numbers of the tests. However, the boundary layer velocity profile can also be described in the velocity defect form,

$$U^+_e - U^+ = -\frac{1}{\kappa} \ln \left(\frac{y + \varepsilon}{\delta} \right) + \frac{2n}{\kappa} \psi(y/\delta)$$

(3)

where $\frac{2n}{\kappa} \psi(y/\delta)$ is the wake function, which describes the behavior of the flow in the outer layer. The wake function should be similar between the biofilm and the smooth wall, because the height of the biofilm is small compared to the thickness of the boundary layer (Tani 1987; Jimenez 2004), and measurements by Walker 2013b over a freshwater biofilm find outer layer similarity. Therefore, velocity defect similarity between the biofilm surface and a smooth wall was assumed (Flack et al. 2005, Castro 2007), using an iterative goodness-of-fit maximization scheme between the biofilm velocity defect profile and the smooth wall velocity defect profile to calculate U_τ and ε over the biofilm surface. ΔU^+ was calculated by finding the value that resulted in the best match between the log and wake regions of the biofilm and smooth wall mean velocity profiles plotted in inner units. The initial origin was set at 0.5 mm below the maximum height of the biofilm across the frame.

RESULTS

Mean Velocity Profile Analysis

Figure 1 shows the mean velocity profile over the biofilm normalized using inner units (left panel) and outer units in velocity defect form (right panel), with the smooth wall profile from both PIV and LDV for comparison. The turbulent boundary layer over the biofilm appeared to exhibit a standard mean velocity profile, with a log-law region and the expected downward shift (ΔU^+) found in rough-wall flows (Fig.1 left panel).

![Figure 1. Average streamwise velocity profile over the biofilm and smooth wall in A) inner units and B) velocity defect form.](image)

From table 1, the roughness function is $\Delta U^+ = 12.8$ which indicates the flow is in the fully-rough regime. This yields an equivalent sand-grain roughness height, k_s, of 8.8 mm. This means that the biofilm destroys the viscous sublayer, and the roughness effect on the mean flow is large. However, when the biofilm mean velocity profile is presented in the defect form, it can be seen that a good collapse with the smooth-wall is observed.

Figure 2 shows the streamwise average of the Reynolds stress profiles, normalized in inner units. Additionally, the local profiles at each streamwise location are shown to highlight the heterogeneities that the biofilm bed introduces in the roughness sublayer. The peak streamwise Reynolds stress over the biofilm is shifted away from the bed as compared with the smooth wall. This is similarly seen over non-uniform biofilm fouling (Walker et al., 2013), and is due to the relative increase of friction forces due to drag on the roughness elements and resulting relative decrease in viscous forces. The Reynolds shear stress has a sharper peak than the smooth wall, and appears slightly elevated compared to the smooth wall, however the local profiles exhibit a range of peak values. The streamwise mean Reynolds stress profiles are at the higher end of the range of the local profiles, due to the mean shear velocity, calculated from the streamwise average velocity profile, being slightly lower than most of the local shear velocities. It is worth pointing out that the local profiles display a collapse of the Reynolds stresses in the outer...
layer, when compared with the smooth-wall Reynolds stresses profiles. The smooth wall data is from PIV.

Spatially explicit mean flow analysis

The 2D turbulent kinetic energy \((tke = \frac{1}{2}(u'^2 + v'^2)) \), normalized by the freestream velocity, is enhanced over the biofilm (Fig. 3).

Turbulent kinetic energy \((tke)\) in the flow over the biofilm exhibited spatial heterogeneity compared to that over the smooth wall, and the core of \(tke\) \((y/\delta > 0.1\) and \(y/\delta < 0.4\)) is more than 4 times greater than that of the smooth-wall case. Similar results are also seen for the RSS (Fig. 4), where the core of the Reynolds shear stress is enhanced and heterogeneous in the streamwise direction.

Figure 2. Average streamwise Reynolds stresses over the biofilm and smooth wall. The local values of the Reynolds stresses above the biofilm are also presented. A) \(u'^2\); B) \(-u'v'\); C) \(v'^2\)

Figure 3. 2D turbulent kinetic energy \((tke)\) normalized by the freestream velocity \((U_e^2)\) over the biofilm (A) and over the smooth wall (B).

Figure 4. Reynolds shear stress \((RSS)\), normalized by \(U_e^2\) over the biofilm (A) and the smooth wall (B).

The production of \(tke\) \((P = -u'v'\frac{\partial u}{\partial y})\) appears to be spatially heterogeneous (Fig. 5), and also appears to be strongest on the downstream edges of roughness elements in the biofilm layer. These near bed hotspots of \(tke\) production are likely indicative of increased turbulent transport and vertical mass and momentum transport (Reidenbach et al. 2010), suggesting that enhancement of access to nutrients due to turbulence is locally variable.

Figure 5. Production of \(tke\) \((P)\), normalized by \(U_e^3\).

Spatial Coherence Analysis

Coherent structures in the turbulent flow were assessed using three methods: two-point correlation, quadrant analysis and the probability density function of the instantaneous RSS.

The inhomogeneous two-point correlation in the streamwise-wall normal plane is given as

\[
\rho_{u_i u_j} = \frac{u_{i}(x_{ref}, y_{ref})u_{i}(x_{ref} + \Delta x, y_{ref} + \Delta y)}{a_{u_i}(x_{ref}, y_{ref})a_{u_j}(x_{ref} + \Delta x, y_{ref} + \Delta y)}
\]

where \(\rho_{u_i u_j}\) is the two-point correlation normalized by the standard deviation of the local velocity and the reference velocity, and \(x_{ref}\) and \(y_{ref}\) denote the reference location. Here we used \(y_{ref} = 0.3\delta\) and \(x_0\) was taken as the middle of the frame (Fig. 6).

Focusing on the streamwise correlation, we see that there is little qualitative difference between the smooth wall and the biofilm flows. In both cases, \(\rho_{uu}\) is elongated in the streamwise direction.
and is characterized by similar inclinations of the correlation. The angle of inclination of the two-point correlation of \(u \), indicated by the black line in Fig. 6C & 6D, is an indication of the angle coherent structures that are shed from the wall (Volino et al. 2007). The angle of inclination of \(\rho_{uv} \) is 12.6° for the smooth wall and 16.3° for the biofilm wall, and was calculated by finding the point on each contour line that is furthest from the reference point and fitting a line through them. The inclination angle indicates that vortical structures in the flow move coherently away from the wall similarly to those above the smooth wall. Coherent vortical structures are important in the transport of turbulence in the boundary layer, especially the ejection of low-momentum fluid from near the bed into the outer layers (Moin and Kim 1985). The similarity in shape and angle of the streamwise correlation over the rough biofilm surface and the smooth wall has been seen over other types of 3D roughness, both irregular (Wu and Christensen 2010) and regular (Volino et al. 2007), though these studies also find a small decrease in the streamwise length of the correlation. Additionally, the elongated, inclined elliptical shape of \(\rho_{uv} \) seen here is also observed over vegetation canopies in aquatic and terrestrial systems (Yan et al. 2016).

The angle of inclination of \(\rho_{uv} \) is thought to be indicative of the size of the heads of hairpin packets. As has been shown in studies over other types of roughness, the shape of \(\rho_{uv} \) does not appear affected by the biofilm (Wu and Christensen 2010). The cross correlation \(\rho_{uv} \) also appears similar over the smooth wall and the biofilm. Such similarity in the shape of \(\rho_{uv} \) over a rough and smooth surface was also observed in Volino et al. 2007. This and other studies, however, have shown a reduction in the streamwise length of contours of \(\rho_{uv} \) and \(\rho_{uv} \) with otherwise similar shapes (Wu and Christensen 2010), which is thought to be due to a decrease in the length scales of large-scale groupings of vortices over rough surfaces.

The angle and spatial extent of these correlations appears to show that the mechanisms of energy and momentum transport in the biofilm flow hypothesized to be largely due to the presence of packets of hairpin vortices that entrain fluid and drive turbulent ejections and sweeps (Wu and Christensen 2010) is similar in structure to that over the smooth wall. Thus the similarity between the smooth wall and biofilm flows indicates that the structure of the turbulence in the biofilm flow is not substantially different from that over a smooth wall.

SUMMARY

Though most ship hulls exhibit more sparse, patchy slime fouling, this variability was not address in the present work in order to focus on the interesting flow conditions over a compliant surface. How the generation of turbulence and the structure of that turbulence influences the drag and mass transport on a surface is complex and not easily predicted based on surface characteristics. Turbulent boundary layer measurements were performed over diatomaceous slime-fouled plates using high resolution PIV. The mean velocity profile over the biofilm shows a large downward shift (\(\Delta U^+ \)), resulting in an effective roughness height significantly larger than the physical thickness of the biofilm and generating more than three times as much drag as the smooth wall. This increase in drag is seen in enhanced \(\kappa e \) and \(\text{RSS} \) (Figs. 3 & 4). When normalized by the shear velocity, the RSS has a similar magnitude, though slightly larger, over the biofilm, but the location of the peak is shifted away from the wall.

Detailed, high resolution measurements of flow above biological surfaces are rare, and the results presented here give important insight into the effects of an algal biofilm at turbulent Reynolds numbers albeit much more modest than observed on a ship. Generally, the mean statistics of the biofilm-fouled surface behaved similarly to a rigid rough wall. Turbulent kinetic energy production appeared dominant at discreet locations along the bed (Fig. 5). Near bed local variability in turbulence production and momentum fluxes indicate that while outer layer similarity is maintained over a biofilm, small scale turbulence structures near the bed, which are important for transport of nutrients to sessile biofilms as well as the hydrodynamic forces that slough biofilm off the surface, are altered by local bed topography created by the biofilm. This dynamic is also observed over coral reefs, where the roughness effects of the reef as a whole determine integrated flow characteristics such as drag coefficient and shear, but at the organismal scale local topography impacts biologically relevant hydrodynamics (Reidenbach et al. 2006). Biofilm growth is highly dependent on fluid motion, even more so than light environment or nutrient concentration (Hondzo and Wang 2002), and it may be that biofilms engineer their near-bed hydrodynamic regime by increasing turbulence in the inner region of the boundary layer.

REFERENCES

